Friday 26 January 2018

Testing of Disinfectant

Testing of Disinfectant

Introduction
Disinfection describes a process that eliminates many or all pathogenic microorganisms, except bacterial spores, on inanimate objects. In health-care settings, objects usually are disinfected by liquid chemicals or wet pasteurization. Each of the various factors that affect the efficacy of disinfection can nullify or limit the efficacy of the process. Factors that affect the efficacy of both disinfection and sterilization include prior cleaning of the object; organic and inorganic load present; type and level of microbial contamination; concentration of and exposure time to the germicide; physical nature of the object (e.g., crevices, hinges, and lumens); presence of biofilms; temperature and pH of the disinfection process; and in some cases, relative humidity of the sterilization process (e.g., ethylene oxide). Unlike sterilization, disinfection is not sporicidal. A few disinfectants will kill spores with prolonged exposure times (3–12 hours); these are called chemical sterilants. At similar concentrations but with shorter exposure periods (e.g., 20 minutes for 2% glutaraldehyde), these same disinfectants will kill all microorganisms except large numbers of bacterial spores; they are called high-level disinfectants. Low level disinfectants can kill most vegetative bacteria, some fungi, and some viruses in a practical period of time. Intermediate-level disinfectants might be cidal for mycobacteria, vegetative bacteria, most viruses, and most fungi but do not necessarily kill bacterial spores. Germicides differ markedly, primarily in their antimicrobial spectrum and rapidity of action.
Disinfectants are antimicrobial agents that are applied to non-living objects to destroy microorganisms that are living on the objects. Disinfection does not necessarily kill all microorganisms, especially resistant bacterial spores; it is less effective than sterilization, which is an extreme physical and/or chemical process that kills all types of life. Disinfectants are different from other antimicrobial agents such as antibiotics, which destroy microorganisms within the body, and antiseptics, which destroy microorganisms on living tissue. Disinfectants are also different from biocides — the latter are intended to destroy all forms of life, not just microorganisms. Disinfectants work by destroying the cell wall of microbes or interfering with the metabolism.
Sanitizers are substances that simultaneously clean and disinfect. Disinfectants are frequently used in hospitals, dental surgeries, kitchens, and bathrooms to kill infectious organisms.
Bacterial endospores are most resistant to disinfectants, but some viruses and bacteria also possess some tolerance. In wastewater treatment, a disinfection step with chlorineultra-violet (UV) radiation or ozonation can be included as tertiary treatment to remove pathogens from wastewater, for example if it is to be reused to irrigate golf courses. An alternative term used in the sanitation sector for disinfection of waste streams, sewage sludge or fecal sludge is sanitisation or sanitization.
Disinfectants used in hospitals and laboratories must be tested periodically to ascertain its potency and efficacy.

Properties
A perfect disinfectant would also offer complete and full microbiological sterilisation, without harming humans and useful form of life, be inexpensive, and noncorrosive. However, most disinfectants are also, by nature, potentially harmful (even toxic) to humans or animals. Most modern household disinfectants contain Bitrex, an exceptionally bitter substance added to discourage ingestion, as a safety measure. Those that are used indoors should never be mixed with other cleaning products as chemical reactions can occur. The choice of disinfectant to be used depends on the particular situation. Some disinfectants have a wide spectrum (kill many different types of microorganisms), while others kill a smaller range of disease-causing organisms but are preferred for other properties (they may be non-corrosive, non-toxic, or inexpensive). There are arguments for creating or maintaining conditions that are not conducive to bacterial survival and multiplication, rather than attempting to kill them with chemicals. Bacteria can increase in number very quickly, which enables them to evolve rapidly. Should some bacteria survive a chemical attack, they give rise to new generations composed completely of bacteria that have resistance to the particular chemical used. Under a sustained chemical attack, the surviving bacteria in successive generations are increasingly resistant to the chemical used, and ultimately the chemical is rendered ineffective. For this reason, some question the wisdom of impregnating cloths, cutting boards and worktops in the home with bactericidal chemicals.
Measurements of effectiveness
One way to compare disinfectants is to compare how well they do against a known disinfectant and rate them accordingly. Phenol is the standard, and the corresponding rating system is called the "Phenol coefficient". The disinfectant to be tested is compared with phenol on a standard microbe (usually Salmonella typhi or Staphylococcus aureus). Disinfectants that are more effective than phenol have a coefficient > 1. Those that are less effective have a coefficient < 1.
The standard European approach for disinfectant validation consists of a basic suspension test, a quantitative suspension test (with low and high levels of organic material added to act as ‘interfering substances’) and a two part simulated-use surface test. A less specific measurement of effectiveness is the United States Environmental Protection Agency (EPA) classification into either high, intermediate or low levels of disinfection. "High-level disinfection kills all organisms, except high levels of bacterial spores" and is done with a chemical germicide marketed as a sterilant by the U.S. Food and Drug Administration (FDA). "Intermediate-level disinfection kills mycobacteria, most viruses, and bacteria with a chemical germicide registered as a 'tuberculocide' by the Environmental Protection Agency. Low-level disinfection kills some viruses and bacteria with a chemical germicide registered as a hospital disinfectant by the EPA."
An alternative assessment is to measure the Minimum inhibitory concentrations (MICs) of disinfectants against selected (and representative) microbial species, such as through the use of microbroth dilution testing.

No comments:

Post a Comment